Меню
Яндекс.Метрика

Распространенность сахарного диабета

Распространенность диабета определить трудно, поскольку его диагностика складывается из огромного числа критериев, многие из которых в настоящее время не рекомендуются. В западных странах больных диабетом насчитывается примерно 1%. Причем диагностировать инсулинзависимый диабет проще, так как диагноз у большинства больных устанавливают после острого проявления клинических симптомов. В Англии заболевание 1 типа диагностируют у 0,22% лиц в возрасте до 16 лет, а в США среди лиц в возрасте до 20 лет эта цифра равна 0,26%. Если распространенность диабета составляет 1%, то примерно четверть его случаев — это инсулинзависимый, а три четверти — инсулиннезависимый диабет. Причем частота случаев инсулинзависимого диабета по отношению к инсулиннезависимому колеблется с возрастом: у молодых чаще диагностируют инсулинзависимый диабет.

Патогенез сахарного диабета I типа

Ко времени проявления инсулинзависимого сахарного диабета большинство р-клеток поджелудочной железы уже разрушено. Деструктивный процесс почти наверняка имеет аутоиммунную природу. Патогенетическая последовательность приведена в табл.327-2. Во-первых, должна прослеживаться генетическая предрасположенность к заболеванию. Во-вторых, у генетически предрасположенных людей причиной диабета служат факторы внешней среды. Считают, что часто это вирусные инфекции. Лучшим доказательством того, что необходим внешний толчок, послужили исследования, проведенные на монозиготных близнецах, показатель конкордантности по диабету среди которых не превышает 50%. Если бы диабет был чисто генетическим заболеванием, следовало бы ожидать, что этот показатель составит 100%. Третьим этапом в развитии заболевания является воспалительная реакция в поджелудочной железе, называемая инсулитом: островки инфильтрируются активированными Т-лимфоцитами. Четвертый этап заключается атакой альтерации или трансформации поверхности b-клеток, что они перестают восприниматься как снос и приобретают для иммунной системы свойства чужеродного, или не своего. Пяты и этап сводится к развитию иммунной реакции. Поскольку островки воспринимаются теперь как не свое, появляются цитотоксические антитела, которые действуют вместе с клеточно-опосредованными иммунными механизмами. Окончательный результат — разрушение b-клеток и появление клиники диабета.

Следовательно, схему патогенеза можно представить следующим образом: генетическая предрасположенность ®инсулит, вызываемый факторами окружающей среды,®превращение b-клеток из своего в не свое®активация иммунной системы ®разрушение b-клеток ®сахарный диабет.

Таблица 327-2.Патогенез сахарного диабета I типа

Этап

Явление

Агент или реакция

Первый

Генетическая предрасположенность

HLA-DR3, DR4 (рецепторы Т-клеток?)

Второй

Действие факторов окружающей среды

Вирус (?)

Третий

Инсулит

Инфильтрация активированными Т-лимфоцитами

Четвёртый

Активация аутоиммуности

Переход своего в не свое

Пятый

Иммунная атака на бета-клетки

Антитела к островковым клеткам, клеточно-опосредованная иммунная реакция

Шестой

Сахарный диабет

Разрушение более 90% b-клеток (a-клетки сохранены)

Генетика. Хотя инсулинзависимый диабет чаще встречается в определенных семьях, механизмы его наследования трудно описать в понятиях теории Менделя. Сообщалось об аутосомно-доминантной, рецессивной и смешанной формах наследования, но ни одна из них не доказана. Генетическая предрасположенность играет, по-видимому, пермиссивную, а не решающую роль.

Анализ родословных обнаруживает низкую частоту прямого вертикального наследования. По данным одного исследования, проведенного в 35 семьях, в каждой из которых имелся ребенок с классическим инсулинзависимым диабетом, только у четверых больных родители страдали диабетом и еще в двух случаях диабет был у бабушек или дедушек. Из 99 сиблингов больных диабетом детей только у 6 имелся явный диабет. Вероятность возникновения диабета I типа у детей, когда это заболевание регистрируется у другого члена семьи первой степени родства, составляет всего 5—10%. Наличие инсулиннезависимого диабета у родителей увеличивает возможность появления инсулинзависимого диабета у потомства. Отражает ли одновременное присутствие ИЗСД и ИНЗСД в одной и той же семье один генетический дефект (т. е. ИНЗСД на самом деле является ИНЗСД I типа) или в одной и той же семье случайно сочетаются два генетических дефекта, причем каждый из них, по-видимому, влияет на экспрессию другого, остается неясным. Низкие показатели передачи ИЗСД затрудняют понимание ее механизмов при семейных исследованиях, но должны ободрять больных диабетом лиц, желающих завести ребенка.

Один из генов восприимчивости к ИЗСД расположен, очевидно, на 6-й хромосоме, поскольку имеется выраженная связь между диабетом и определенными антигенами лейкоцитов человека (HLA), которые кодируются генами главного комплекса гистосовместимости, локализованными на этой хромосоме (см. гл.63). Многие исследователи идентифицировали четыре локуса, называемые литерами А, В, С и D, с аллелями каждого сайта. Главные аллели, с которыми связан повышенный риск ИЗСД,—это HLA-DR3, HLA-Dw3, HLA-DR4, HLA-Dw4, HLA-B8 и HLA-B15. Особое значение придают локусу D, а локусы В и А вовлекаются за счет неслучайной связи cD (неравновесное сцепление). По сравнению с общей популяцией риск, обусловленный присутствием DR3 или DR4, возрастает в 4—10 раз. Если же сравнивать не с контрольной популяцией, а с группой лиц, не имеющих предрасполагающего антигена, относительный риск увеличивается в 30 раз. Однако у многих лиц, несущих аллели высокого риска, диабет никогда не развивается.

Рис.327-1. Схематичное изображение главного комплекса гистосовместимости на 6-й хромосоме. (Любезно предоставлено д-ром J. HaroldHelderman.)

Можно предположить, что дальнейшее изучение генов в D-области поможет более точно определить риск, т. е. обнаружить конкретные варианты антигена HLA-DRили HLA-DQ, не идентифицируемые при обычном скрининге, которые теснее ассоциированы с диабетом, чем простое присутствие антигена. Например, не все HLA-DR4 обусловливают повышенный риск диабета, а только некоторые их варианты. Следует подчеркнуть также, что диабет может возникнуть и при отсутствии тех HLA-детерминант, которые идентифицированы в качестве маркеров высокого риска при популяционных исследованиях. Антигены В7 и DR2 (Dw2) называют защитными, поскольку среди больных диабетом они выявляются с меньшей частотой, чем в общей популяции. Однако на самом деле они могут быть не защитными, а аллелями низкого риска, так как их присутствие находится в обратной зависимости от присутствия DR3/DR4. Иными словами, если присутствуют DR2, Dw2, то аллели высокого риска должны отсутствовать.

В настоящее время D-область подразделяют на участки DP, DQи DR (рис.327-1). (DPраньше обозначали SB, aDQ— DC.) Ассоциированный с HLA ген восприимчивости может быть теснее связан с участком DQ, чем DR. Если это так, то ассоциация с DR3 или DR4 обусловлена неравновесным сцеплением. Многие исследователи считают, что для развития диабета нужен второй ген восприимчивости, который мог бы кодировать дефект Т-клеточного рецептора.

Следует остановиться на функции тех молекул клеточной поверхности, которые кодируются генами области HLA. Антигены, кодируемые участками А, В и С, называются молекулами I класса. Они присутствуют на ядерных клетках, и их функция заключается прежде всего в защите от инфекции, особенно вирусной. Антигены D-области называются молекулами II класса. Они функционируют в сфере регуляторной (хелпер/супрессор) Т-клеточной системы и реакции на аллоантигены (например, реакция отторжения трансплантированных органов). Молекулы II класса в норме присутствуют только на В-лимфоцитах и макрофагах крови или тканей.

Молекулы I и II классов лучше рассматривать в качестве сигналов узнавания/программирования для запуска и усиления иммунных реакций в организме. Так, активация цитотоксических Т-лимфоцитов для борьбы с вирусной инфекцией требует присутствия одной и той же молекулы I класса и на инфицированной клетке, и на цитотоксической Т-клетке. Иными словами, своя молекула I класса в сочетании с вирусным антигеном формирует новый узнаваемый антиген, на который может реагировать Т-лимфоцит. На клетку, несущую вирусный антиген, но не свой антиген HLA I класса, Т-клетка не должна реагировать. Точно так же хелперная Т-клетка активируется только тогда, когда она встречается с антигенпредставляющими клетками (макрофагами), несущими узнаваемую молекулу II класса и антиген, для которого существует точное узнающее место.

Считают, что появление молекул II класса на эндокринных клетках, где они в норме отсутствуют, играет важную роль в аутоиммунном деструктивном процессе, ведущем к возникновению сахарного диабета и других эндокринных заболеваний, таких как тиреоидит Хашимото. Присутствие своей молекулы II класса в сочетании с чужеродным или аутоантигеном распознается хелперным Т-лимфоцитом, который затем инициирует активацию иммунной системы, включая образование антител против клетки, несущей сочетание молекулы II класса с чужеродным (или аутологичным) антигеном (см. ниже).

Читать далее: Факторы окружающей среды