Меню
Яндекс.Метрика

Глава 328. Лактат-ацидоз

Лактат-ацидоз — распространенное состояние. Он обусловлен тем, что во всех случаях, когда оксигенация недостаточна для обеспечения энергетических потребностей, молочная кислота в скелетных мышцах и других тканях образуется с повышенной скоростью. Таким образом, лактат-ацидоз представляет собой общий конечный результат любых заболеваний, сопровождающихся циркуляторным коллапсом или гипоксией. Лактат-ацидоз может возникать и в отсутствие явной гипоксии тканей. В большинстве случаев его причину удается выяснить, но различают и идиопатический лактат-ацидоз.

Биохимические основы. В узком смысле биологическую жизнь можно определить как способность генерировать макроэргические фосфатные связи внутри клетки. Наиболее важным макроэргическим соединением является аденозинтрифосфат (АТФ), но и другие нуклеотиды, например гуанозитрифосфат, также играют существенную роль. Структура и функция любой ткани организма прямо или косвенно зависят от АТФ или эквивалентных макроэргических нуклеотидов. При гипоксии ткани АТФ не может образовываться в нужных количествах и возникает лактат-ацидоз. Он являеется метаболическим следствием активации запасной системы образования АТФ при нарушении основного энергопродуцирующего пути. Нормальный механизм генерации АТФ в аэробных условиях показан на рис.328-1. При окислении субстратов, таких как свободные жирные кислоты или глюкоза, до ацетил-КоА входящие в их состав атомы водорода переносятся на никотинамидаденин-динуклеотид (НАД) с образованием восстановленной формы пиридиннуклеотида (НАД•Н). Окисление ацетил-КоА до СО, в цикле Кребса также приводит к образованию НАД*Н. Основное количество НАДН образуется вмитохондриях, где происходит окисление жирных кислот и локализованы ферменты цикла трикарбоновых кислот; цитозольный НАД•Н должен попадать в митохондрии с помощью челночных систем, поскольку он не может непосредственно проникнуть через внутреннюю митохондриальную мембрану. В присутствии кислорода НАД•Н окисляется цепью транспорта электронов; конечным продуктом является вода (метаболическая вода). На каждый моль НАД•Н, проходящий через последовательность цитохромов, образуется2—3моля АТФ. При нормальном содержании кислорода в тканях и высоких запасах АТФ скорость распада гликогена и окисления глюкозы мала (пастеровский эффект). И наоборот, при низком содержании кислорода запасы АТФ уменьшаются и распад гликогена и гликолиз активируются.

Рис.328-1. Схема аэробного метаболизма.

Клеточные отсеки не указаны. Гликолиз протекает в цитозоле, тогда как ферменты окисления жирных кислот и цикла Кребса локализуются в митохондриях. Пунктирные линии означают, что в присутствии кислорода гликогенолиз и гликолиз заторможены (см. текст).

Рис.328-2. Фосфофруктокиназа и гликолиз. Знак минус означает ингибирование, знак плюс— активацию (см. текст).

Регуляция гликолиза осуществляется в основном ферментом фосфофруктокиназой (ФФК). Как показано на рис.328-2, этот фермент катализирует превращение фруктозо-6-фосфата во фруктозо-1, 6-дифосфат. Активность ФФК регулируется несколькими аллостерическими модуляторами. В мышцах и других тканях главным физиологическим ингибитором является АТФ, а сильным активатором — АМФ. В печени основным регулятором ФФК служит фруктозо-2,6-дифосфат (см. гл.327). При нормальной концентрации фруктозо-2,6-дифосфата скорость гликолиза (глюкозо-6-фосфат ®пируват) высока, а глюконеогенез (пируват ®глюкозо-6-фосфат) заторможен. В мышцах концентрация фруктозо-2,6-дифосфата мала, и здесь он, как считают, не играет главной регулирующей роли. Концентрация фруктозо-2,6-дифосфата в печени при гипоксии падает, и метаболизм гепатоцитов сдвигается, таким образом, в сторону глюконеогенеза. Эта адаптивная реакция способствует поглощению и утилизации лактата в условиях, когда ускоряется его образование вне печени. Сокращение мышцы активирует распад гликогена и продукцию молочной кислоты, но парадоксально, что концентрация фруктозо-2,6-фосфата при сокращении снижается. Это подтверждает точку зрения о том, что активность фосфофруктокиназы и гликолиз в мышце регулируются в основном отношением АТФ/АМФ, а не фруктозо-2,6-дифосфатом.

Последовательность событий, возникающих при гипоксии ткани, схематически представлена на рис.328-3. Когда кровоток в периферических тканях снижается настолько, что количество кислорода становится меньше, чем необходимо для удовлетворения энергетических потребностей, поток электронов по цепи их транспорта нарушается или блокируется (все цитохромы оказываются восстановленными). Из-за этого блока НАД•Н, который продолжает образовываться до последней минуты, не может быть окислен, что приводит к росту отношения НАД•Н/НАД как в митохондриях, так и в цитозоле. В результате все равновесные реакции, в которых роль кофактора играет НАД•Н, сдвигаются в сторону восстановления (например, оксалоацетат ®малат, пируват ®лактат), замедляя поток субстратов через многие критические пункты. Кроме того, в таких условиях не происходит синтеза АТФ и его концентрация в ткани снижается. Соответственно увеличивается уровень АДФ и АМФ. В результате активируется фосфофруктокиназа, что ускоряет распад гликогена и окисление глюкозы. Ускорение гликолиза приводит к гипепродукции пировиноградной кислоты, которая из-за повышенного содержания в клетке НАД•Н восстанавливается в молочную кислоту. Проще говоря, ацидоз при тканевой гипоксии обусловлен превращением нейтрального субстрата гликоген/глюкоза в сильную пировиноградную кислоту. Это именно лактат-ацидоз, так как высокое отношение НАД•Н/НАД сдвигает лактатдегидрогеназную реакцию вправо. Перечисленные изменения показаны на рис.328-4.

Рис.328-3. Схема анаэробного метаболизма.

Заштрихованными кубиками показаны пункты метаболической блокады, обусловленной недостаточным поступлением кислорода в ткани и высоким отношением НАДН/НАД. Жирными стрелками показано ускорение гликогенолиза, гликолиза и образования лактата. Гликолиз продолжается, несмотря на высокое отношение НАДН/НАД в цитозоле, потому, что при образовании каждой молекулы лактата высвобождается одна молекула НАД (используемая в глицеральдегид-3-фосфатдегидрогеназной реакции).

Рис.328-4. Схема биохимических механизмов лактацидоза.

Даже при нормальном снабжении кислородом в некоторых тканях организма человека продуцируется лактат. Он попадает в печень, где вступает на путь глюконеогенеза, превращаясь в глюкозу (цикл Кори). Снижение поглощения лактата печенью, несомненно, играет роль в патогенезе лактат-ацидоза (особенно у больных с сосудистым коллапсом, тяжелым поражением клеток печени или недостаточностью ферментов глюконеогенеза), но выраженный ацидоз, вероятно, невозможен без гиперпродукции лактата на периферии. Все ли ткани при лактат-ацидозе продуцируют избыточные количества лактата или только некоторые, неизвестно.

Теоретически ускорение гликолиза, вызываемое гипоксией, можно рассматривать как альтернативную систему продукции АТФ в условиях нарушения нормального митохондриального механизма. Однако система гликолиза неэффективна. Один моль глюкозы, образующейся из гликогена и полностью окисляющейся в цикле Кребса, дает 37 молей АТФ, тогда как выход АТФ при превращении гликогена в пируват составляет только 3 моля. Тем не менее на короткое время гликолитическая продукция АТФ может оказаться жизненно важной.

Читать далее: Клинические проявления лактат-ацидоза